LEADLINETM

Carbon fiber reinforced plastic rods Embedding Method

Features of the LEADLINE construction method

LEADLINETM embedding method uses carbon fiber reinforced plastic rods that are manufactured by processing carbon fiber into a rod shape by the pultrusion method. The rods are embedded in epoxy resin mortar or ultra-rapid hardening polymer cementitious mortar and bonded to an existing concrete deck slab of a road bridge to strengthen it.

Features

Strengthening member protection when renewing a bridge surface

Prevents damage to the strengthening members when renewing the asphalt layer or bridge waterproofing layer.

Shortened construction period

Compared with the carbon fiber construction method, the number of curing cycles can be reduced, so the construction period can be shortened.

Cost reduction

LEADLINE™ embedding method reduces construction costs by 85 to 95% compared to the carbon fiber sheet method.

Early road opening possible

Since the curing time is fast, the LEADLINE™ method is ideal for repairing and strengthening road bridges that need to be opened soon.

Protection by strengthening materials

*1 It was calculated from the application of 40m by 12 workers.

*2 The cost for carbon fiber sheet construction was indexed as 100.

*3 Use of Ultra-rapid hardening polymer cementitious mortar.

Comparison of Construction period

4 5 6 Cost *2 method Attaching Protection Carbon fiber fabric Adjusting Water-Deck slab Surface method Curing 100 Curing Curing Curing proofing / unevenness carbon mortar cutting preparation application (HM fabric x2 layers) (Resin mortar) fiber fabric Resin morta . Pavement CFRP rods Deck slab Surface Primer Curing Curing mortar method unevenness mortar proofing / 85 cutting application reparation arrangement (HM12 Φctc260) (Resin mortar (Resin mortar . Pavement 6~7hr * CFRP rod Water Jltra-rapid-hardening Curing 95 application cutting preparation proofing / olymer cementitious Protection (HM12 Φctc260) Continuous works

Experiment to confirm the strengthening effect

CFRP Rod

CFRP Rod with GFRP rib

Physicality of High-Modulus CFRP rod

				*1	*2
Type	Cross-sectional shape	Nominal diameter (mm)	Cross section (mm)	Tensile modulus (kN/mm²)	Tensi l e strength (kN/mm²)
High elasticity product (CFRP rod)	Round	8	50.3	442	950
		10	78.5		
		12	113.1		

^{*1} Test method BS EN2561 compliant. *2 This specification is subject to change without prior notice.

Construction procedure

文書NO.A35031M31001 2020年6月12日改訂(AP)

prohibited without prior written consent.