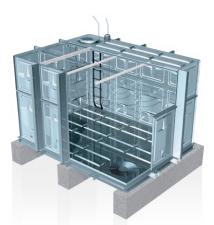
A MITSUBISHI CHEMICAL INFRATEC

Receiver Tank / Elevated Water Tank HISHITANK[™]Stainless Steel Panel Type

New Anti-earthquake design

Sanitation

Provides clean drinking water that complies with the Water Supply Act and the Food Sanitation Act of Japan. Easy maintenance management is achieved with the external reinforcement frame method.


Safety

The structure maintains sufficient strength for ensuring water storage functionality even during major earthquakes.

Convenience

Achieves excellent workability during panel installation and assembly significantly shortening the time required to complete the assembly.

HISHITANK[™] was developed with the provision of clean drinking water as its primary mission. It achieves high standards of quality for earthquake-resistance, sanitation, durability, and workability that are required of water tanks, making it optimal for condominiums, office buildings, factories, and leisure facilities.

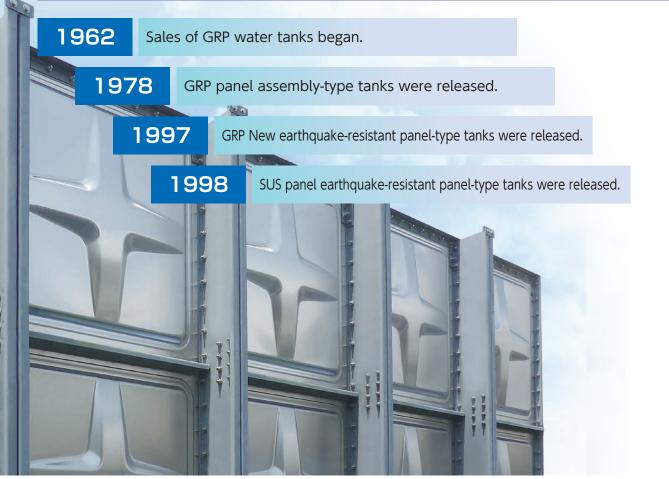
HISHITANK[™]Stainless Steel Panel Type

Contents

2	preface
3	Roles of Watar Tanks
	Safety
6	Sanitation
7	Benefits
8	Specifications and Certifications
10	Panel Types
11	Panel Combinations
12	Pipe Mounting Positions
14	Standard Parts
16	Frame/Foundation
18	Stainless Steel Thermal Storage Tank/Hot Water Tanl

We at Mitsubishi Chemical Infratec

Preface


HISHITANK[™] is a masterpiece water tank developed by MITSUBISHI CHEMICAL INFRATEC CO., LTD., a comprehensive plastic manufacturer, through tireless basic research and by combining its technologies.

With supplying water safely, securely, and hygienically as the top priority, we ensure strict and consistent quality control in design, purchasing materials, manufacturing, and shipping HISHITANK[™] tanks.

To ensure the reliability of HISHITANK[™] as a water storage tank, we use only parts and components that meet all applicable standards.

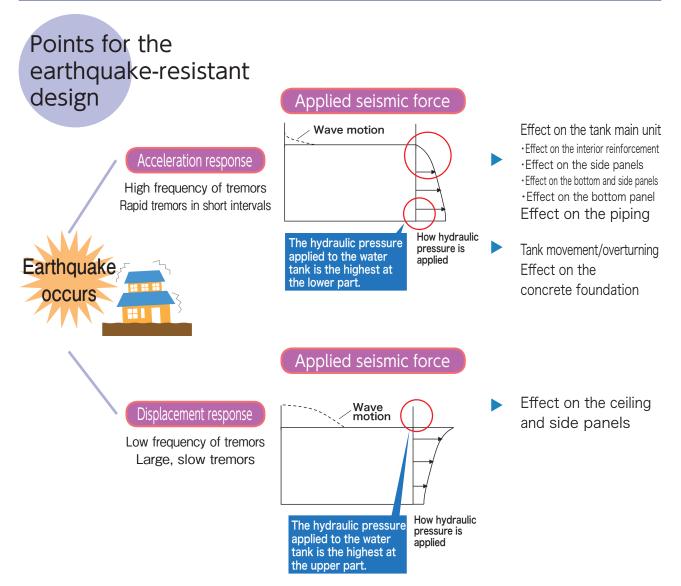
Through more than 55 years of experience in studying and improving HISHITANK[™] in Japan, one of the world's most earthquake-prone countries, we make every effort to prove ourselves worthy of the trust of customers.

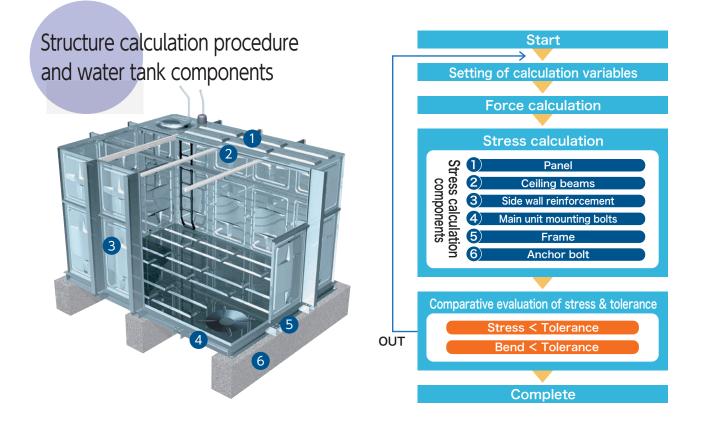
The History of HISHITANK™

Roles of Water Tanks

Water tanks provide a steady supply of drinking water and domestic water, which are a crucial component of comfortable living.

Feeling Secure with Water Tanks

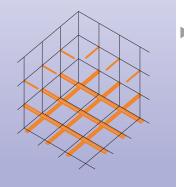

Feeling secure with water tanks—the importance of this has not changed over time. Reservoirs carved out of rock have turned into distribution reservoirs for waterworks, and the water vessels where water is stored have transformed into water tanks in office buildings and condominiums. These enable us to use water daily with a sense of security. Water tanks that have water storage functionality have become part of today's water supply systems. From behind the scenes, they help enhance our everyday lives by serving as emergency water supply tanks during disasters as well as in various other ways.


Safety

Our design technology is constantly evolving.

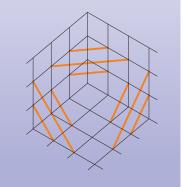
We have been continuing, and will continue to accumulate and improve upon our technologies by making it a standard practice to verify design precision through experiments using actual products. All bolt-assembly type panel tanks adopt the external reinforcement frame method. Its high reliability has been demonstrated in some of Japan's largest earthquakes in the past. HISHITANK[™] is a trusted brand created through design technologies that are supported by ample experimental data.

Earthquake-resistant structure design

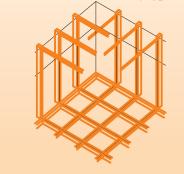


Change in water tank unit reinforcement method

In past major earthquakes, there were no cases of damage to the water storage functionality of external reinforcement structure bolt-assembly type stainless steel tanks. External organizations have also examined and confirmed the effectiveness of the external reinforcement structure.


Stay bolt method

The intersecting points of the opposing side walls are pulled from both sides with the SUS rods.


The brace method arranges reinforcement at the intersecting points of the side walls.

External reinforcement frame method

This high rigidity reinforcement method applies a portal frame structure to the side wall reinforcements, metal level frames, and ceiling reinforcements.

Based on data from earthquake disaster investigation and earthquake-resistance experiment, the highly reliable external reinforcement frame method is applied to all models of bolt-assembly type tanks.

Sanitation

Keeping the water clean.

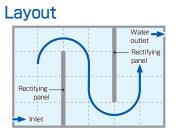
Keeping water clean is HISHITANK[™]'s first and foremost function, as well as its primary mission. The external reinforcement frame method (external reinforcement structure) improves workability and enables thorough interior inspections.

Two-part water tank

By dividing the water tank into two or more tanks, inspections and cleaning of the tank's interior can be done without stopping the water supply.

Note : When cleaning the two-part water tank and using one of the two tanks to supply water, do so for only a short period of time with the water level below half capacity. If using only one tank for an extended period (one week or more), contact us beforehand.

Free-design partition panel


Partition panels can Layout be placed freely based on the panel module measurements. However, there are some layouts in which this is not possible.

	4
Water outlet	Water outlet
	Partition panel
► Inlet	Inlet🔫

Please contact us for details.

Rectifying panels for preventing water stagnation

Rectifying panels can be used to prevent water stagnation in high-capacity water tanks. The dimensional layout of the rectifying panels can be freely

designed based on the panel module measurements.

Resin-coated bolts and nuts design

In the vapor phase part of the water tank, the free chlorine may cause the assembly bolts and nuts to rust. By using resin-coated bolts and nuts, the HISHITANK[™] Stainless Steel Panel Type achieves strengthened rust resistance.

Resin-coated bolts used in the vapor phase part

Application areas inside tanks

1 1		
Part	Metal material	Bolt type
Liquid phase part	Stainless steel	Stainless steel
Vapor phase part	Resin coating on stainless steel	Resin coating on stainless steel bolts

Benefits

Bolt assembly type

The external reinforcement structure of the bolt assembly stainless steel tank offers several advantages: it makes it easy to upgrade, no heat is used, waste liquid disposal is unnecessary, and high voltage power is not needed.

100% recyclable

Using bolt-assembly type stainless steel panels makes separation easy, and the

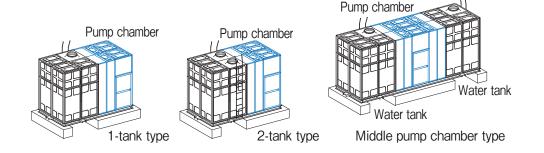
stainless steel used as materials in the water tank makes it 100% recyclable.

No waste liquid disposal is required

The bolt-assemble structure makes the acid cleaning of welded parts and the waste liquid disposal that

follows it unnecessary, preventing any water or soil pollution due to by industrial waste.

Easy to upgrade


The bolt-assembly structure makes it easy to disassemble, reassemble, and reuse, allowing easy and economic relocation and upgrade work.

No heat is used

The bolt-assembly structure makes welding work unnecessary. No heat is used during assembly or disassembly.

Receiver tank with pump chamber

The pump chamber can be mounted adjacent to the receiver tank. (The pump chamber can be constructed using FRP panels or SUS panels.) The door position and the direction of the door opening can also be changed.

100

Benefits

Specifications and Certifications

Format

Format	Earthquake resistance grade	Vapor phase part specifications	Structure	
TF type		High corrosion-resistant vapor	Single panel specification	
TSF type	Horizontal seismic intensity: KH = 1.0	phase part specification	Composite panel specification	
SF type	Sloshing : Sv = 150 cm/sec	Standard vapor phase part	Single panel specification	
SSF type		specification	Composite panel specification	
TH type		High corrosion-resistant vapor	Single panel specification	
TSH type	Horizontal seismic intensity: KH = 1.5	phase part specification	Composite panel specification	
SH type	Sloshing : Sv = 375 cm/sec	Standard vapor phase part	Single panel specification	
SSH type		specification	Composite panel specification	
TJ type		High corrosion-resistant vapor	Single panel specification	
TSJ type	Horizontal seismic intensity: KH = 2.0	phase part specification	Composite panel specification	
SJ type	Sloshing : Sv = 375 cm/sec	Standard vapor phase part	Single panel specification	
SSJ type		specification	Composite panel specification	

1. The high corrosion-resistant vapor phase part specification features SUS329J4L (austenitic and ferritic dual-phase stainless steel) for the ceiling panels and the top section of the side walls.

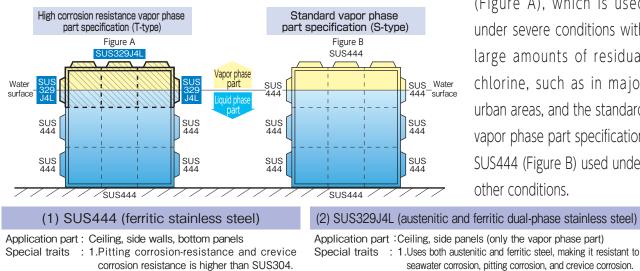
- 2. The standard vapor phase part specification features SUS444 (ferritic stainless steel) for all panels.
- 3. The composite panel specification uses foam polystyrene for the heat insulating material, which has low thermal conductivity.
- 4. The external reinforcement material has a hot-dip galvanized finish.

Specifications

Item	Standard design specifications					
Hydrostatic pressure	Water level (m) \times 0.01 MPa [0.1 kgf/cm ²]					
Design water level	Tank height (designated height) × 0.9 * The full water level position must be set at the var phase part (within 800 mm of the upper edge part the side wall panels, within 300 mm for 1.0 mH a 1.5 mH). If operated with a water level below th mark, the interior components may corrode.					
	Horizontal seismic intensity by design: K_{H} = 1.0, 1.5, 2.0					
Earthquake	Vertical seismic intensity by design: = Horizontal seismic intensity by design \times 1/2					
	Sloshing design velocity response spectrum value: Sv = 150, 375 cm/sec					
Snow accumulation	0.6×10 ^{-₃} MPa [60 kgf/m²] (vertical snow accumulation: 30 cm)					
Wind pressure	1160 N/m ² (load considering major urban area factors based on the Building Standards Act revised in 2000)					
Water temperature	Room temperature (30°C or lower)					
Water quality (pH)	5.8 to 8.6					

Certifications

Public Buildings Association evaluation document



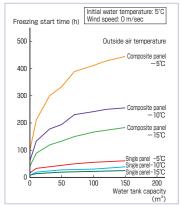
 * Any specification other than that described above is a special design. Please contact us for details.

Vapor phase part maintenance

Depending on the installation requirement of the stainless steel tank, rusting may occur only in the gas layer part called the vapor phase part inside the tank.

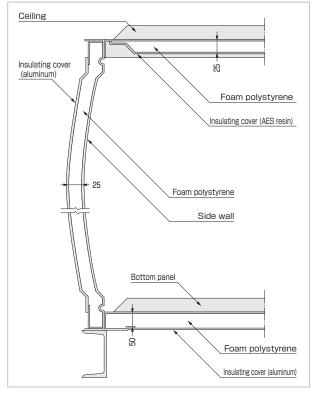
We carefully select materials considering the various rusting conditions, such as water quality and installation location, and offer two types of materials: the highly corrosion-resistant vapor phase part specification SUS329J4L

(Figure A), which is used under severe conditions with large amounts of residual chlorine, such as in major urban areas, and the standard vapor phase part specification SUS444 (Figure B) used under other conditions.

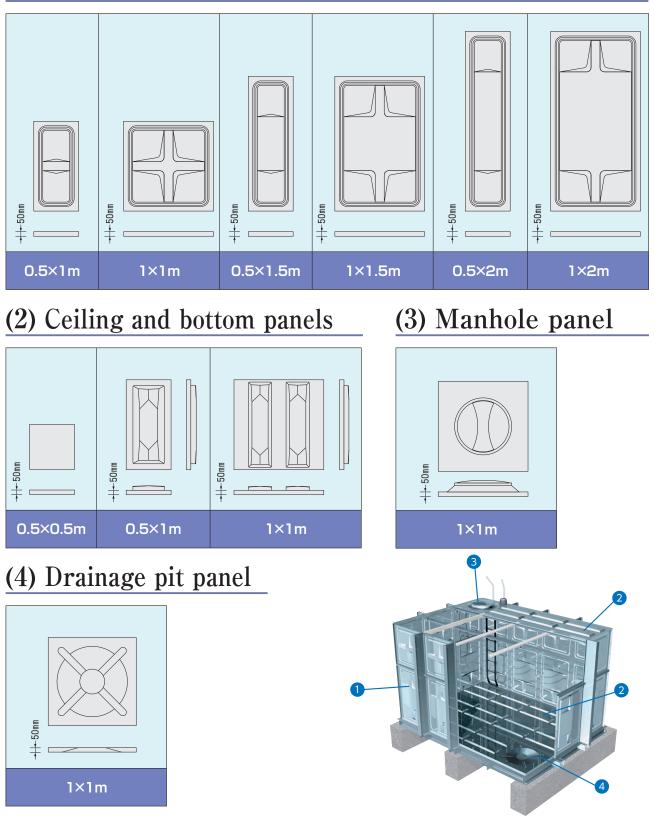

seawater corrosion, pitting corrosion, and crevice corrosion. 2.It is expensive, but due to its superb corrosion 2.Ferritic steel is highly resistant to stresscorrosion cracking. resistance, it is often called "super stainless steel."

Bolt-assembly type composite panel structure stainless steel panel tank

The bolt-assembly type composite panel structure stainless steel panel tank is used when insulation is required to prevent condensation in high-humidity rooms, or when heat insulation is required in extremely cold areas or for air conditioning purposes.


The composite panel structure is made by inserting heat insulating material (foam polystyrene) between the outer surface of the single panel structure and the insulating cover.

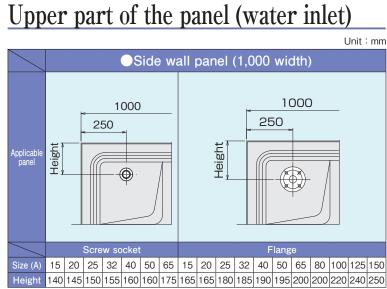
Thermal insulation performance/freezing start time


These values are estimates and are not guaranteed.

Bolt-assembly type composite panel structure stainless steel panel tank

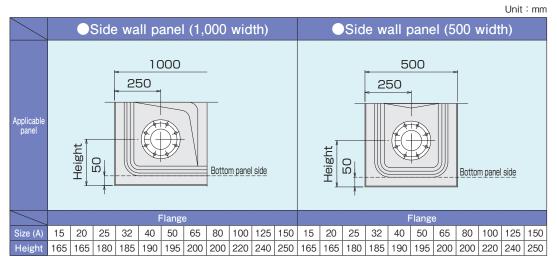
Panel Types

(1) Side wall panel



Panel Combinations

1mH	1.5mH	2mH	2.5mH	3mH	
1~2G	1~2G	1~2G	1~2G	1~2G	


3.5mH	4mH	4.5mH	5mH
1~1.5G	1~1.5G	1G	1G

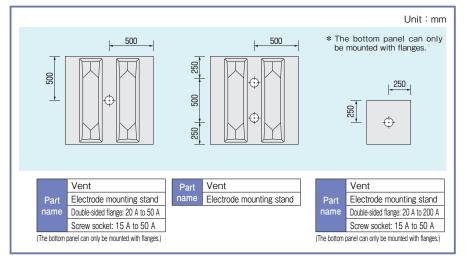
Pipe Mounting Positions

Unit : mm

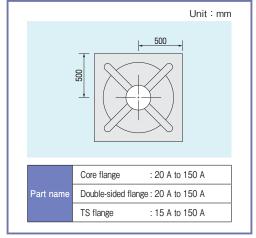
Lower part of the panel (water outlet, overflow outlet)

Upper part of the panel (overflow outlet) Unit : mm Side wall panel (1,000 width) Applicable panel

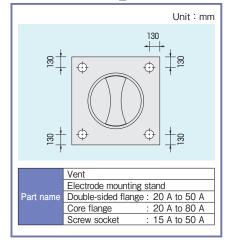
Flange


Size (A)

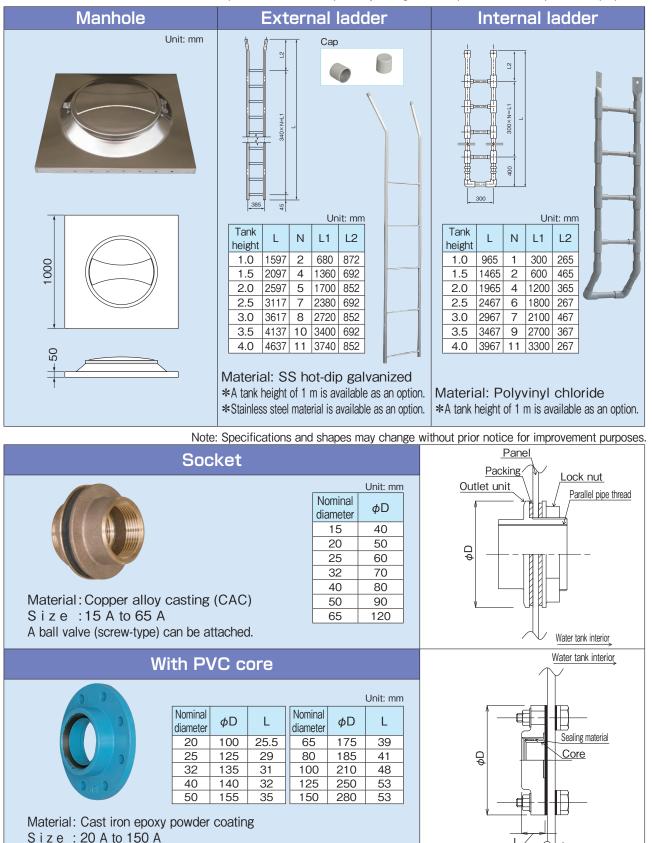
Height

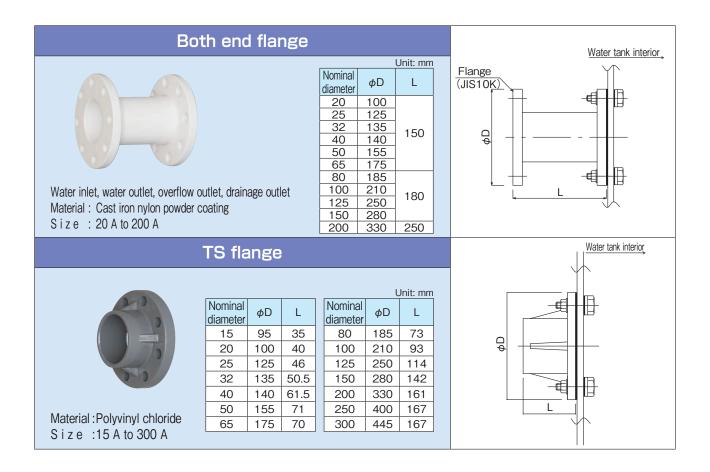

15 20 25 32 40 50 65 80 100 125 150

165 165 180 185 190 195 200 200 220 240 250

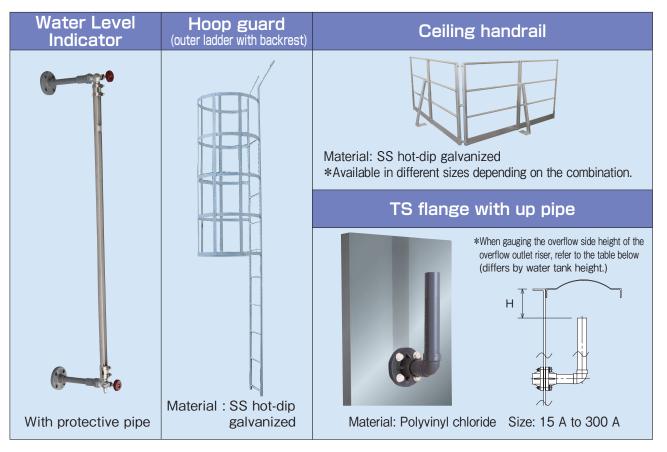

Ceiling (bottom panel) (1 m \times 1 m) (0.5 m \times 0.5 m)

Drainage outlet $(1 \text{ m} \times 1 \text{ m})$

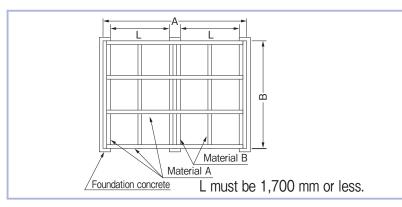

Manhole panel



Standard Parts


Note: Specifications and shapes may change without prior notice for improvement purposes.

HISHITANK[™]Stainless Steel Panel Type



Optional parts

Frame/Foundation

Level frame Select materials according to the water tank's earthquake-resistant properties.

Frame description

1. The basic frame for the HISHITANK[™] G Panel Type is a grid pattern shape.

2.Basic frame dimensions for full-sized panels are 1,002 mm pitch, and halfsized panels are 502 mm pitch.

3. The concrete foundation width should be 400 mm, and the height should be 500 mm.

4. The frame's external dimensions are as shown in Table 1.

5. The standard materials used for the frame (concrete foundation pitch with an interior distance of 1,700 mm or less) are as shown in Table 2 (frame material table). Concrete foundation pitch with an interior distance of over 1,700 mm is as shown in Table 3 (frame material table).

Table 1: External dimensions of the level frame (A or B)					
Nominal dimensions	External dimensions (A or B)	Nominal dimensions	External dimensions (A or B)	Nominal dimensions	External dimensions (A or B)
1,000	1,104	4,500	4,612	8,000	8,118
1,500	1,606	5,000	5,112	8,500	8,620
2,000	2,106	5,500	5,614	9,000	9,120
2,500	2,608	6,000	6,114	9,500	9,622
3,000	3,108	6,500	6,616	10,000	10,122
3,500	3,610	7,000	7,116		
4,000	4,110	7,500	7,618		

of the lovel fr ما مانم . */* ^

Material A $[100 \times 50 \times 5$ 1 0m

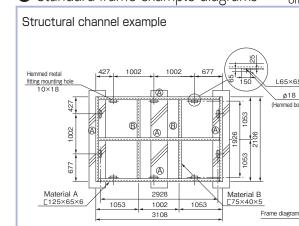
Horizontal seismic intensity

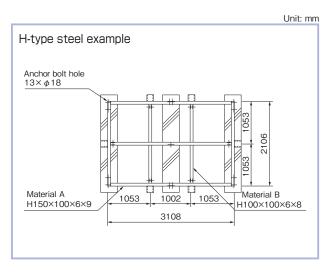
Tank height

Table 2: Frame material list

1.011	Material B	$L65 \times 65 \times 6$
1.5	Material A	[125×65×6
1.5m	Material B	$[75 \times 40 \times 5]$
2.0m	Material A	[125×65×6
2.011	Material B	$[75 \times 40 \times 5]$
2.5m	Material A	[150×75×6.5
2.50	Material B	$[75 \times 40 \times 5]$
3.0m	Material A	$[150 \times 75 \times 6.5]$
3.00	Material B	$[75 \times 40 \times 5]$

(Standard foundation pitch with an interior distance of 1,700 mm) Unit: mm


1.0


Table 3: Frame material list (If the interior distance of the standard foundation pitch is over 1,700 mm) Unit: mm

1		Under pretris over 1,7 og mint, Offic. min
Tank height	Horizontal seismic intensity Foundation interior distance	1.0
	1700 < L ≦ 2000	$[125 \times 65 \times 6]$
1.0	2000 < L ≦ 2500	$[150 \times 75 \times 6.5]$
	2500 < L ≦ 3000	$[180 \times 75 \times 7]$
	1700 < L ≦ 2000	[150×75×6.5
1.5	2000 < L ≦ 2500	$H150 \times 100 \times 6 \times 9$
	2500 < L ≦ 3000	$H194 \times 150 \times 6 \times 9$
	1700 < L ≦ 2000	[150×75×6.5
2.0	2000 < L ≦ 2500	$H200 \times 100 \times 5.5 \times 8$
	2500 < L ≦ 3000	$H194 \times 150 \times 6 \times 9$
	1700 < L ≦ 2000	$[180 \times 75 \times 7]$
2.5	2000 < L ≦ 2500	$H200\times100\times5.5\times8$
	2500 < L ≦ 3000	$H300 \times 150 \times 6.5 \times 9$
	1700 < L ≦ 2000	$[180 \times 75 \times 7]$
3.0	2000 < L ≦ 2500	$H194 \times 150 \times 6 \times 9$
	2500 < L ≦ 3000	$H300 \times 150 \times 6.5 \times 9$

^{*}Due to the anchor casting, you may need to increase the number of foundations depending on the water tank size. Note: The above only shows Material A. For Material B, please refer to the Table 2 specifications.

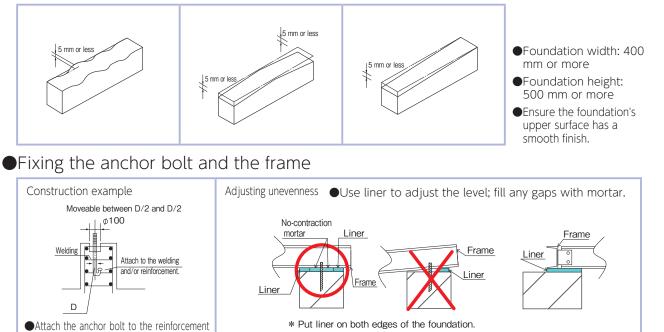
Note: The external dimensions of the 1.0-mH frame are the values listed above minus 30 mm. The external dimensions of the 2.0-mH frame are the values listed above plus 20 mm. The external dimensions of the 2.5-mH and 3.0-mH frames are the values listed above plus 20 mm.

Standard frame example diagrams

Unit: mm

L65×65×6

ø18 ed bolt holes


Concrete foundation intervals (Standard)

										Unit: mm
Concrete Foundation	Tank length		1.0mH		1.5	mH,2.0	mH	2.5	mH,3.0ı	mH
Concrete Poundation	(longest)	L	А	В	L	А	В	L	А	В
	1000	1034	_	—	1044	—	_	1064	—	—
	1500	1536	_	_	1546	_	_	1566	_	_
│ │ <mark>→ └──→</mark> │	2000	2036	_	_	2046	_	_	2066	_	_
	2500	2538	1519	1019	2548	1524	1024	2568	1534	1034
	3000	2538	1519	1019	3048	1524	1524	3068	1534	1534
A B	3500	3540	1770	1770	3550	1775	1775	3570	1785	1785
- L →	4000	4040	2020	2020	4050	2025	2025	4070	2035	2035
	4500	4542	1512	1518	4552	1517	1518	4572	1517	1518
	5000	5042	1679	1684	5052	1684	1684	5072	1694	1684
	5500	5544	1846	1852	5554	1851	1852	5574	1861	1852
	6000	6044	2013	2018	6054	2018	2018	6074	2028	2018
	6500	6546	1634	1639	6556	1639	1639	6576	1524	1764
	7000	7046	1759	1764	7056	1764	1764	7076	1774	1764
	7500	7548	1885	1889	7558	1890	1889	7578	1900	1889
	8000	8048	2010	2014	8058	2015	2014	8078	2025	2014
	8500	8550	1710	1710	8560	1712	1712	8580	1722	1712
	9000	9050	1807	1812	9060	1812	1812	9080	1822	1812
A B B A	9500	9552	1908	1912	9562	1913	1912	9582	1923	1912
L	10000	10052	2008	2012	10062	2013	2012	10082	2023	2012

Foundation

Precision level of finished foundation

and the welding, or just the reinforcement.

* If the frame has a split, use liner on the split part as well.

Stainless Steel Thermal Storage Tank/Hot Water Tank HISHITANK[™]Stainless Steel Panel Type

Heat resistant specifications

Maximum water temperature: 80°C

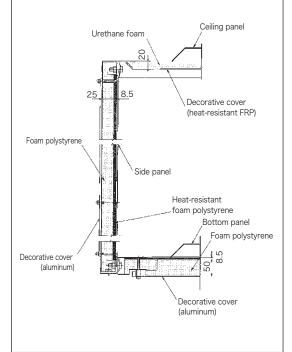
Highly corrosion-resistant SUS444 panels are used. Designed to store hot water with temperatures of up to 80°C. The heat insulating material comes in two types: the 25 mm thickness and the 50 mm thickness (optional) types. It can also be used as a hot water tank that uses economical late-night power. It is also effective in energy-saving efforts.

Bolt-assembly type Easy transportation and installation

The panel-structure bolt-assembly build makes it easy to transport and install in places with narrow access paths.* Assembly time is also significantly shortened. Tank size is selected in 0.5 m pitches to match the installation space. The insulation material is post-installed, making it easy to separate and discard during maintenance or upgrades. (* Please contact us for details.)

No need for welding or the use of heat

Heat is not used in assembly, making it possible to install in sites, such as factories, where fire cannot be used. Acid cleaning of welded parts and the waste liquid disposal that follows it are also unnecessary.


Earthquake-resistant design Anti-sloshing tank

Leveraging HISHITANK[™]'s accomplishments and technological expertise, the design incorporates a highly earthquake-resistant structure that employs sloshing countermeasures (compliant with Ministry of Land, Infrastructure, Transport and Tourism Public Notice Nr. 1924). The strengthened external reinforcement frame method makes reinforcement of the tank interior obsolete, making it easier to perform cleaning and maintenance. Heat exchangers can also be installed.

Standard design specifications

ltem	Standard design specifications					
Hydrostatic pressure	Water level (m) × 0.01 MPa [0.1 kgf/cm²]					
Design water level	Tank height (designated height) × 0.9 the full water level position must be set at the vapor phase part (within 800 mm o the upper edge part of the side wall panels, within 300 mm for 1.0 mH and 1.5 mH) If operated with a water level below that mark, the interior components may corrode.					
	Horizontal seismic intensity by design: $K_{H} = 1.0, 1.5$					
Earthquake	Vertical seismic intensity by design: = Horizontal seismic intensity by design × 1/2					
Eartinquarte	Sloshing design velocity response spectrum value: Sv = 150, 375 cm/sec					
Snow accumulation	0.6 × 10 ⁻³ MPa <60 kgf/m ² >					
Show accumulation	(Vertical snow accumulation: 30 cm)					
	1160 N/m ²					
Wind pressure	(load considering major urban area factors based on the Building Standards Act revised in 2000)					
Max. water temperature	80°C					
Water quality (pH)	5.8 to 8.6					
Insulation spec	25 mm thickness (optional: 50 mm thickness)					

Bolt-assembly type heat insulation-build stainless steel panel composite panel structure

* Any specification other than that described above is a special design. Please contact us for details

AITSUBISHI CHEMICAL INFRATEC CO.,LTD.

Head Office 1-2-2 Nihonbashi Hongokucho, Chuo-ku, Tokyo 103-0021 Phone : 81-3-3279-3455

URL: http://www.mp-infratec.co.jp/setubi/eng/index.html

*Please read and understand "operating instruction" before using the water tank.

- *Please proceed with maintenance of water tank in accordancce with "Operating Instruction" provided by our company.
- *Damage to water tank may be caused if modification or change is made to it. If any modification or change is necessary, please call upon us.
- *If any damage to the water tank is found by the periodical inspection, please be sure to contact our distributor for determining if repair is necessary, etc. If any damage or accident is caused by the continued use of water tank as it is or just by an emergency repair, it would fall into that it would not be covered by the warranty.

The information and data contained in this brochure are as of March, 2019.

- The content of this brochure may be changed without prior notice.
- •Due to printing characteristics, the color tones may differ from the actual ones.

 The transcription of any data or information contained in this brochure without prior written consent is strictly prohibited.